
CEMCAP is a Horizon 2020 project with the objective to prepare the grounds for cost- and resource-effective CCS in European cement industry.

Calcium Looping CO, Capture

Matthias Hornberger¹, Reinhold Spörl¹, Maurizio Spinelli², Matteo Romano², Mónica Alonso³, Carlos Abanades³, Giovanni Cinti⁴, Simon Becker⁵, Robert Mathai⁵

¹Institute of Combustion and Power Plant Technology (IFK), University of Stuttgart, Stuttgart, Germany ²Politechnico di Milano, Milan, Italy ³Agencia Estatal Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain ⁴Italcementi, Bergamo, Italy

⁵IKN GmbH, Neustadt, Germany

matthias.hornberger@ifk.uni-stuttgart.de

Contact: Matthias Hornberger

www.sintef.no/cemcap Twitter: @CEMCAP CO2

Results & Publications

https://www.sintef.no/ projectweb/ cemcap/results/

This project is funded by the European Union's Horizon 2020 Framework Programme for research and innovation

Calcium Looping CO, Capture

Principle of Calcium Looping (CaL) CO₂ Capture

- CO₂ capture by cyclic calcination and (re)carbonation of CaO containing sorbent
- High energy efficiency due to high temperature level, beneficial heat integration
- Synergies arise from common feedstock of clinker manufacturing and CaL

Main Conclusions

Tail-end CaL

CO₂ capture of 98 % demonstrated

- High fuel consumptions but net clean electricity export possible with heat recovery steam cycle
- Technology ready to implement
- $3.26 \text{ MJ}_{LHV}/\text{kg}_{CO_2}$

Integrated CaL

- Proof of Concept
- Much lower fuel consumptions. Heat recovery steam cycle compensates consumptions for ASU and CO2 compression
- $2.32 \text{ MJ}_{1HV}/\text{kg}_{CO_2}$

Research Statements

Tail-end CaL:

- High CO₂ capture efficiencies demonstrated at semi industrial scale (up to 98 %)
- Well-known CaL design criteria are applicable for cement flue gases
- Minor uncertainties regarding usability for CO₂ capture in cement plant

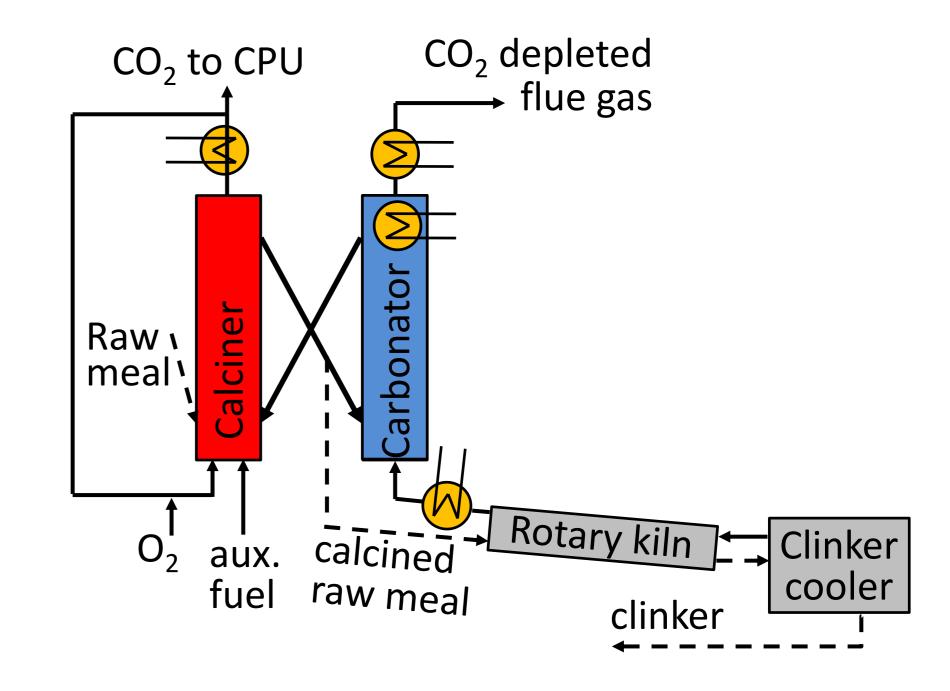
80 70 60 620 600 Temperature, °C

Integrated CaL:

- Use of EF reactors beneficial. Additional milling step may be required for FB systems.
- CO₂ capture of CaO in EF environment confirmed
- Simulations of EF carbonator show that high CO₂ capture is achievable with proper solid/gas ratio
- Further investigation during **CLEANKER** project

Cooled Reactor **etticiency** 0.6 0.5 15 kg_{sorbent}/Nm³_g 5 kg_{sorbent}/Nm³_{gas} Reactor length, m

Silicate formation:


- Partial deactivation of CaO sorbent by fast formation of Belite
- Deactivation is influenced by (i) Ca/Si distribution in solid, (ii) temperature, (iii) residence time, (iv) partial pressures of CO_2 and $H_2O_{(g)}$

Cal CO, capture implementation

Tail-end CaL

CO₂ depleted CO₂ to CPU flue gas Raw meal CaCO₃ **CEMENT** Flue gas plant O_2 fuel CaO **↓** clinker

Integrated CaL

