

ECRA Chair@UMONS: «From CO, to Energy: Carbon Capture in Cement Production and its Re-use» Sinda LARIBI, Seloua MOUHOUBI, Nicolas MEUNIER, Remi CHAUVY, Guy DE WEIRELD and Diane THOMAS Chemical & Biochemical Process Engineering and Thermodynamics Units, Faculty of Engineering, University of Mons, 20 Place du Parc, 7000 Mons - Belgium - *diane.thomas@umons.ac.be

A: CO, Capture and Purification Processes

Sinda LARIBI (01/2014 -> 01/2018)

Capture and purification processes applied to CO₂ derived from cement industry for conversion into methanol "

• Post-combustion CO₂ capture by absorption-regeneration into amine solvents applied to conventional and partial oxyfuel combustion cement flue gases (1):

B: CO₂ Conversion Processes

Nicolas MEUNIER (09/2013 -> 09/2018) 'CO₂ capture in cement production and re-use: optimization of the overall process "

• Innovative modifications of the methanol process: Aspen modeling

- screening of solvents at laboratory scale micro-pilot scale experimental tests simulations of micro-pilot and industrial units -> interest clearly demonstrated:
- E_{regen} decreasing when y_{CO2} increased • Effect of SO₂ on CO₂ absorption performances into aqueous amine solutions: experimental study
- Simulation of a Sour-Compression Unit for de-NOX and de-SOx: CO₂ purification applied to full oxyfuel combustion flue gases (2): comprehensive modeling of the NOx-SOx chemical mechanisms parametric study -> optimization of the SCU process

Seloua MOUHOUBI (02/2016 -> 01/2020)

- Development of a simulation model of the post-combustion CO₂ capture process by absorption-regeneration using demixing solvents: application to cement flue gases "
- Selection of the promising bipasic system: 0

water

- + **DEEA** (= 2-(diethanolamino)ethanol)
- + MAPA (= 3-(methylamino)propylamine)

• Identification of demixing and non-demixing conditions related to DEEA and MAPA concentrations, CO₂ loading and temperature

- appropriate operating conditions
- Upgraded methanol process: technical description

economic balance

• Building of a new micro-pilot installation for the determination of kinetic data relative

to the simulation of the methanol catalytic process

device's development

experimental procedures tested

calibration

comparison of various catalysts

(commercial and innovative)

-> optimization of the process

Remi CHAUVY (09/2015 -> 08/2019)

Study of the potential of different CO₂ conversion options for the application of Carbon Capture and Re-use to the cement industry: simulation and technico-economic analysis "

- Initial assessment: reduction of the panel 0
- Semi-quantitative analysis:
 - ° Criteria
 - [°] Results -> Ranking list of CO₂ conversion options and selection of routes studied*

CO ₂ -based compound	CO ₂ -conversion process	Weighted Score	
*Methanol	Catalytic hydrogenation	20.5	
Methane	Catalytic hydrogenation	16.9	
Microalgae	Biological process	15.4	
*Formic acid	Electrochemical	15.1	Interest for
	reduction		the cement industry
*Calcium carbonates	Mineral carbonation	12.9	
*Sodium carbonates	Mineral carbonation	11.3	
Ethanol	Microbial process	11.1	

- Thermodynamic modeling of the system: 0 extended UNIQUAC and e-NRTL to predict the LLV equilibrium
- Experimental determination of absorption performances Ο and kinetic study : reactive absorption modelling
- -> complete modeling of the process using DEEA+MAPA aqueous demixing solvents and assessment of the regeneration energy saving

• Two processes specifically and currently studied:

- CO₂ catalytic conversion (hydrogenation) into methanol
- CO₂ conversion into formic acid (electrochemical reduction)

-> Aspen Plus and LCA modelisations for **comparison of performances**

Acknowledgements

European Cement Research Academy (ECRA) and HeidelbergCement are acknowledged for the technical and financial supports accorded to the ECRA Academic Chair.