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From CO, to Energy:

Carbon Capture in Cement Production and its Re-use
KEY CONCLUSIONS

* Processes optimization and integration are required to lower energy and resources

consumption

 Economic viability of CCU processes are highly dependent on the assumptions (e.g. price of

electricity)

* CO, reduction may be possible only if renewable energy use as input
 Mitigation potential of CCU to methanol represents 50% of the original emissions of a

RESULTS

reference system without CCU

CO, Capture

CO, Capture: Three ways were highlighted for the decrease ({ ) of the energy consumption and

the cost of CO, capture for the application to cement flue gases:

1. Partial O,-combustion to increase (1) flue gas CO, content: \, by 26% of E ., if oo, T to 44%

2. Advanced process configurations: {, by 35% of E
3. Use of demixing solvents for {, the regen. flow rate: {, by 40% of E
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Energy savings thanks to:
(a) Alternative configurations - (b) Partial O,-combustion

CO, Purification

CO, Purification: Efficiency of Sour Compression Unit (SCU) De-SOx/De-NOx process Absorption

into pressurized water (15-30 bar) 2 From 2-column to 1-column process

Optimized process 2 CAPEX: 20-25 M€ & OPEX: 6-8 €/t0, treated
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Operating parameters optimization
COZ Conversion for {, CAPEX & OPEX

CO, Conversion: |dentification of the most interesting CO,-based conversion pathways

Methanol ; Methane ; Dimethyl carbonates ; Calcium carbonates ; p-algae

CO, conversion into methanol: global chain was simulated and optimized including energy
integration with the CO, capture = CAPEX: 60 M€ & OPEX: 90 €/t,,

Environmental study: maximum reduction by 50% of CO, emissions
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Technological metrics of the CO, capture and conversion units

normalized to the production of one-ton methanol
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