

CEMCAP is a Horizon 2020 project with the objective to prepare the grounds for cost- and resource-effective CCS in European cement industry.

Integration of WP6 in CEMCAP project

P 3: CEMCAP /P 4: Comparative

results

WP6 Oxyfuel modelling

Key conclusions

- Modelling of the oxyfuel cement clinker production process confirms: High quality clinker can be produced
- Oxyfuel process can be optimised by adaptation of process parameters for burner set-up, calcination temperature shift and enhanced cooling rates
- False air ingress leads to additional electrical energy demand in the CO₂ purification unit (CPU) according to an exponential relation: Careful maintenance is important.

WP6 Research

Oxyfuel burning process

- The heat radiation profile in the refined oxyfuel model could be matched to the reference air case (BAT3000) by switching the oxygen supply from secondary to primary gas.
- The coating behaviour of the material in the kiln and the thermal load of the rotary kiln is similar for these both cases and therefore fulfil the optimum operational mode.

Oxyfuel calcination process

Higher calcination temperatures require to reduce slightly the degree of calcination at kiln inlet for equipment protection and to avoid coating in the calciner.

 \rightarrow Limestone dissociation will be completed in the first few meters of the rotary kiln.

Experimental results	Air (20% CO ₂)	Oxyfuel (80% CO ₂)
Calcination start-temperature	610 °C	610 °C
Calcination and tomporature	200 °C	

Authors

Armin Jamali (VDZ) Johannes Ruppert (VDZ) Volker Hoenig (VDZ) Rahul Anantharaman (SINTEF)

Contact: Armin Jamali armin.jamali@vdz-online.de

www.sintef.no/cemcap Twitter: @CEMCAP CO2

This project is funded by the European

Calcination end-temperature

Oxyfuel cooling process

The cooler performs even better under oxyfuel conditions due to the increased heat exchange between the hot clinker and the recirculated CO₂ rich gas.

However, the cold clinker extraction is a focal point for limiting false air ingress to the oxyfuel gas recirculation.

Modelling of increased false air ingress

False air	Flue gas	Thermal	Electrical
ingress	CO_2 content	energy	energy
[vol%]	[vol%]	[kJ/kg _{clinker}]	[kJ/kg _{CO2}]
4.6	80	3,114	407
6.3	77	3,140	418
8.1	74	3,182	432

The electrical energy demand for the CPU rises exponentially with increasing of false air ingress and therefore regular

Heat Integration Model

Oxyfuel refined (Base case)				
False air	%	6.3		
Clinker prod	t/h	125		
O ₂ flow	t/h	31		
ORC	MWe	2.9		
CO ₂ purity	%	97.3		
CO_2 captured	t/h	98.8		
CO_2 emissions	t/h	11		
Rec. rate	-	0.55		

Union's Horizon 2020 Framework

Programme for research and innovation

maintenance will be essential to reduce

false air ingress in the oxyfuel clinker

The CO₂ capture rate of the refined oxyfuel process was calculated as between 85-90 %

