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Calcium Looping process fundamentals 
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Calcium Looping for CO2 capture: history 

• Originally proposed by Shimizu et al., 1999. A twin fluid-bed reactor for removal of CO2. Chem. Eng. Res. Des., 77. 

• Continuously developed since 1998, mainly for application in power plants 

• Several fluidized bed pilot facilities - demonstrated up to 1.7 MW 
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200 kW pilot at IFK, U. Stuttgart 1.7 MW pilot at La Pereda (ES) 1 MW pilot at TU Darmstadt 



Calcium Looping for cement plants 
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1. Cement plant-power plant coupling: CaO-rich spent sorbent from a CaL power plant as feed for the cement 
plant, as substitute of CaCO3 

 

 

2. Post-combustion “tail end” configuration: CaL process is integrated in the cement plant with a conventional 
post-combustion capture configuration 

 

 

3. Integrated CaL configuration: the CaL process is integrated within the cement production process by 
sharing the same oxyfuel calciner 

CEMCAP focus 

CLEANKER focus 



Calcium Looping CO2 capture:  
Tail-end CaL configuration 
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• Heat from fuel consumption recovered in efficient (~35% efficiency) steam cycle for 
power generation 

• CFB CaL reactors: d50=100-250 μm, vs. particle size for clinker production d50=10-20 μm 
 CaL purge milled in the raw mill at low temperature 

General features of the process: 

• Carbonator removes CO2 from cement plant flue gas 
 Easy integration in existing cement  

• Limestone partly calcined in Calcium Looping calciner 
 CaO-rich purge from CaL calciner used as feed for 
the cement kiln 

• High fuel consumption (double calcination for the 
mineral CO2 captured) 



Calcium Looping CO2 capture:  
Tail-end CaL configuration 
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Conducted Work: 

• Parameter screening at 30 kW scale at CSIC (TRL5) 

• Demonstration at semi-industrial scale (200 kWth) at IFK (TRL6) 

• Process integration study and techno-economic analysis 

Arias et al., 2017. CO2 Capture by CaL at Relevant Conditions for Cement Plants: Experimental Testing in a 30 kW Pilot Plant. Ind. Eng. Chem. Res., 56, 2634–2640. 

Hornberger et al.,  2017. CaL for CO2 Capture in Cement Plants – Pilot Scale Test. Energy Procedia, 114, 6171–6174. 

Spinelli et al., 2017. Integration of CaL systems for CO2 capture in cement plants. Energy Procedia, 114, 6206-6214. 

De Lena et al., 2017. Process integration of tail-end CaL in cement plants. Int J Greenh Gas Control. 67, 71-92. 
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Calcium Looping CO2 capture:  
Tail-end CaL configuration 
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Demonstration at semi-industrial scale: 

• High CO2 capture up to 98 % demonstrated in TRL6 

facility 

• The CaL design parameters for cement plant 

applications are in good agreement with the design 

parameters for power plant operation. 

• Tail-end CaL ready for demonstration at TRL7-8. 



Calcium Looping CO2 capture:  
integrated configuration 
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General information:  

• CaL calciner coincides with the cement kiln 

pre-calciner 

• Calcined raw meal as CO2 sorbent in the 

carbonator 

• Sorbent has small particle size (d50=10-20 μm) 

 entrained flow reactors 

Marchi M.I., et al., 2012. Procedimento migliorato per la 
produzione di clinker di cemento e relativo apparato. Patents 
MI2012 A00382 and MI2012 A00382. 

Romano et al., 2014. The calcium looping process for low CO2 
emission cement plants. Energy Procedia, 61, 500-503. 
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Calcium Looping CO2 capture:  
integrated configuration 
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Development of integrated CaL concept using entrained flow 

calciner/carbonator: 

• 1D carbonator modelling showed possibility of achieving 

high capture efficiency with solids/gas ratio of ~10 kg/Nm3. 

• Belite formation in calciner may cause a decrease of the 

sorbent CO2 carrying capacity. 

• Demonstration of chemistry and fluid-dynamics of the 

reactors in industrially relevant conditions needed. 

Alonso et al., 2018. Capacities of Cement Raw Meals in Calcium Looping Systems. Energy & Fuels, 31, 13955–13962. 

Spinelli et al., 2018. One-dimensional model of entrained-flow carbonator for CO2 capture in cement kilns by calcium looping process. Chemical 
Engineering Science, 191, 100-114. 



Mass and energy balance 
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Cement 

plant w/o 
capture 

Tail-end CaL 
(20% 

integration) 

Tail-end CaL 
(50% 

integration) 

Integrated 
CaL 

Carbonator CO2 capture efficiency [%] -- 88.8 90.0 82.0 

Total fuel consumption [MJLHV/tclk] 3240 8720 7100 5440 

Rotary kiln fuel consumption [MJLHV/tclk] 1230 1220 1220 1150 

Pre-calciner fuel consumpt. [MJLHV/tclk] 2010 1550 850 
4290 

CaL calciner fuel consumpt. [MJLHV/tclk] -- 5950 5040 

Net electricity consumpt. [kWhel/ tcem] 97 -81 42 117 
Direct CO2 emissions [kgCO2/tclk] 865 119 79 55 
Indirect CO2 emissions [kgCO2/tclk] * 35 -29 15 46 
Equivalent CO2 emissions [kgCO2/tclk] 900 90 94 101 
Equivalent CO2 avoided [%] -- 90.0 89.5 88.8 
SPECCA [MJLHV/kgCO2] ** -- 4.42 4.07 3.16 

* Evaluated with the average EU-28 electricity mix: ηe = 45.9%, ECO2,e = 262 kg/MWh 

** Specific primary energy consumption for CO2 avoided 

De Lena et al., 2017. Process integration of tail-end CaL in cement plants. 
Int J Greenh Gas Control. 67, 71-92. 



Economic analysis 

11 

-30

-20

-10

0

10

20

30

40

50

60

70

80

C
o

st
 o

f C
O

2
av

o
id

ed
, €

/t
C

O
2

Fuel Electricity Other var. Opex Fixed Opex Capex

Tail End CaL (IL=20%) Tail End CaL (IL=50%) Integrated CaL

Total CCA

Cost of CO2 avoided = 50-55 €/tCO2, mainly due to Capex. 



Conclusions and outlook 
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Ca-LOOPING PROCESS INTEGRATION OPTIONS: 

1. Post-combustion capture configuration:  

• Low uncertainty in the technical feasibility 

• Very high CO2 capture expected 

• Two calciners are present in the system, leading to high fuel consumptions 

2. Integrated CaL configuration:  

• High CO2 capture efficiency without modifying rotary kiln operation (no need of kiln 
oxyfiring). 

• Higher thermal efficiency and lower fuel consumptions 

• New carbonator design and fluid-dynamic regime: fluid-dynamics, heat management and 
sorbent performance need validation 

 

– Competitive cost of CO2 avoided. 
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