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The questions by the EC

 Under what circumstances CCU for production of
fuels, chemicals and materials can deliver climate
benefits and what are their total climate mitigation
potential in the mid- and long-run?

* How can the climate mitigation potential of CO,
incorporated in products such as fuels, chemicals and
materials be accounted for considering that the CO,
will remain bound for different periods of time and
then may be released in the atmosphere?



Outline

1. The CCU system
2. RES efficiency in delivering energy services
3. Carbon balances of technology chains

4. Innovation needed
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CCU POTENTIAL IN EU TO SUPPORT:

* climate change objectives;

e circular economy (O- vs. L-economy);
* energy security and RES deployment;
* evolution of CO, capture systems.
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2. RES efficiency in service delivery
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2. Road transport
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A FEW COMMENTS

* C-free RES to be LCA-assessed;

* CCU neither sufficient nor needed for O-
economy, while CO, capture needed;

* CO, storage necessary for NETSs;

* full LCA needed to allocate CO, emissions
to stakeholders.
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4. Innovation needed

1. Policy perspective — Measures, regulations and incentives
should examine the energy system, including CCU, in a
holistic, integrated, coordinated and transparent manner.

2. Systemic perspective — A system approach is required when
evaluating the energy system and its CCU sub-systems;
progress is needed, in terms both of stakeholder awareness
and of consistent definitions of system boundaries and of
reference datasets.

3. Technology perspective — There are scientific and technical
challenges in the areas of:
1. collection and purification of CO, from different sources;
2. synthesis of green-hydrogen via water splitting powered by RES;

3. reductive activation catalytic technologies for CO, conversion to
fuels and chemicals.



5. Comparison of net-zero CCU loops to C-free systems
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5. The efficiency cost of seasonal energy storage
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5. CCU fuels for power generation and propulsion

= Power-methane-power
= ~30% net cycle efficiency

= Power-ammonia-power
= efficiency > CCU fuels: ~35%
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5. CCU fuels for power generation and propulsion
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Only 15% of oil (i.e. only about 5% of all S0 Rl requires new chemistry and
fossil-Carbon) is used for chemicals. possibly new products. _
CCS route seems feasible (1-2 Gt CO,/y) Renewable ener.gy penalty is substantial.
in terms of costs, resources and impact. Land use footprint for renewables and
Effective coupling of waste management DACis to be evaluated.

and CO, capture is a prerequisite. .

Biorefinery route involves new products
and requires new chemistry.
Natural resources footprint is critical.

Full LCA needed to allocate CO,
emissions to stakeholders. .



